成果筛选
共找到85结果
筛选条件 : Hongjie WU
Long Cheng; Weizhong Lu; Yiyi Xia; Yiming Lu; Jiyun Shen; Zhiqiang Hui
Computational Biology and Chemistry, 2025 118 - EI SCIE

摘要 : Protein secondary structure prediction remains a pivotal concern within the domain of bioinformatics. In this innovative research, we introduce a novel methodology to further enhance a protein prediction model grounded in single sequences. Our key contribution lies in integrating the state-of-the-art (SOTA) model ESM2, which hails from the field of universal protein language models. By leveraging ESM2, we are able to acquire residual embeddings and contact maps for the protein sequences under study. Regarding the model architecture, we employ a unique dual-way U-Net framework for effective feature fusion. This framework is complemented by the integration of a cross-attention mechanism, enabling the model to capture more comprehensive context information. Furthermore, In accordance with the distinctive characteristics of protein sequences, we incorporate a so-called GCU_SE module into both the encoder and the decoder components of the model. These innovative enhancements enable the ProAttUnet model to outperform the benchmark model SPOT-1D-Single by 1.6%, 3.5%, 1.0%, 4.6%, and 7.2% for ss3, and by 5.5%, 7.8%, 4.1%, 8.1%, and 10.1% for ss8 across five test sets (SPOT-2016, SPOT-2016-HQ, SPOT-2018, SPOT-2018-HQ and TEST2018, respectively). This significant improvement vividly demonstrates the effectiveness and novelty of our proposed model.

Runhua Zhang; Xin Zhang; Shulin Zhao; Quan Zou; Yijie Ding; Xiaoyi Guo
Journal of computational chemistry (Online), 2025 46 (11) - EI SCIE

摘要 : In pursuit of unraveling novel structural inhibitors for treating monkeypox virus, targeting the VP37 protein, which is bioactive in response to ST-246, to discern pharmaceutical molecules specifically tailored to combat monkeypox virus. We employed a semi-flexible molecular docking, molecular dynamic simulation, and ADME screening methodology, which are based on structure, to screen compounds from CMNPD and TCM in silico. These methodologies allowed us to find potential candidates depending on their binding values and interactions with the binding site of main protease. To further evaluate the stability of these interactions, we conducted molecular dynamics simulations and calculated binding energies. Herein, employing methods such as binding energy calculations, comparative analyses, and molecular dynamics simulations for activity computations, the six top hits of the compounds were validated as five kinds of good inhibitors, surpassing its reference compound ST-246, for better in vitro drug candidates against MPXV.

Xinyan ZHANG; Yongjun ZHU; Hongjie WU; Fanli ZHOU
2025 43 (2)
Jiahao He; Qiming Fu; You Lu; Yunzhe Wang; Hongjie Wu; Jianping Chen
Journal of Building Engineering, 2024 98 - EI SCIE

摘要 : In order to regulate the load peak of households and achieve energy conservation, this study proposes a household energy management system (HEMS). The proposed HEMS embeds the Self-attention mechanism in the LSTM network to predict the load demand accurately for the next time step. Based on the prediction information, the HEMS optimize the control of household energy storage devices by deep reinforcement learning (DRL) in real time. According to the experimental results during two testing periods, the HEMS reduces peak load by 19.85 % and 26.38 %, and reduces energy consuming by 26.28 % and 22.08 %, outperforming other predictive control frameworks. Additionally, it achieves 31.9 % reduction in electricity costs. It can be seen that the optimal control of energy storage devices by the proposed HEMS through the predictive control framework is effective for achieving household load regulation and energy conservation.

Meiling Qian; Weizhong Lu; Yu Zhang; Junkai Liu; Hongjie Wu; Yaoyao Lu
Current Bioinformatics, 2024 19 (5) - SCIE

摘要 : Background: As we all know, finding new pharmaceuticals requires a lot of time and money, which has compelled people to think about adopting more effective approaches to locate drugs. Researchers have made significant progress recently when it comes to using Deep Learning (DL) to create DTI. Methods: Therefore, we propose a deep learning model that applies Transformer to DTI prediction. The model uses a Transformer and Graph Transformer to extract the feature information of protein and compound molecules, respectively, and combines their respective representations to predict interactions. Results: We used Human and C.elegans, the two benchmark datasets, evaluated the proposed method in different experimental settings and compared it with the latest DL model. Conclusion: The results show that the proposed model based on DL is an effective method for the classification and recognition of DTI prediction, and its performance on the two data sets is significantly better than other DL based methods.

Runhua Zhang; Baozhong Zhu; Tengsheng Jiang; Zhiming Cui; Hongjie Wu
Current Bioinformatics, 2024 19 (10) - SCIE

摘要 : Background: Conventional approaches to drug discovery are often characterized by lengthy and costly processes. To expedite the discovery of new drugs, the integration of artificial intelligence (AI) in predicting drug-target binding affinity (DTA) has emerged as a crucial approach. Despite the proliferation of deep learning methods for DTA prediction, many of these methods primarily concentrate on the amino acid sequence of proteins. Yet, the interactions between drug compounds and targets occur within distinct segments within the protein structures, whereas the primary sequence primarily captures global protein features. Consequently, it falls short of fully elucidating the intricate relationship between drugs and their respective targets. Objective: This study aims to employ advanced deep-learning techniques to forecast DTA while incorporating information about the secondary structure of proteins. Methods: In our research, both the primary sequence of protein and the secondary structure of protein were leveraged for protein representation. While the primary sequence played the role of the overarching feature, the secondary structure was employed as the localized feature. Convolutional neural networks and graph neural networks were utilized to independently model the intricate features of target proteins and drug compounds. This approach enhanced our ability to capture drugtarget interactions more effectively. Results: We have introduced a novel method for predicting DTA. In comparison to DeepDTA, our approach demonstrates significant enhancements, achieving a 3.9% increase in the Concordance Index (CI) and a remarkable 34% reduction in Mean Squared Error (MSE) when evaluated on the KIBA dataset. Conclusion: In conclusion, our results unequivocally demonstrate that augmenting DTA prediction with the inclusion of the protein's secondary structure as a localized feature yields significantly improved accuracy compared to relying solely on the primary structure.

Chuangchuang Tian; Luping Wang; Zhiming Cui; Hongjie Wu
Computational Biology and Chemistry, 2024 108 - EI SCIE

摘要 : Drug target affinity prediction (DTA) is critical to the success of drug development. While numerous machine learning methods have been developed for this task, there remains a necessity to further enhance the accuracy and reliability of predictions. Considerable bias in drug target binding prediction may result due to missing structural information or missing information. In addition, current methods focus only on simulating individual non-covalent interactions between drugs and proteins, thereby neglecting the intricate interplay among different drugs and their interactions with proteins. GTAMP-DTA combines special Attention mechanisms, assigning each atom or amino acid an attention vector. Interactions between drug forms and protein forms were considered to capture information about their interactions. And fusion transformer was used to learn protein characterization from raw amino acid sequences, which were then merged with molecular map features extracted from SMILES. A self-supervised pre-trained embedding that uses pre-trained transformers to encode drug and protein attributes is introduced in order to address the lack of labeled data. Experimental results demonstrate that our model outperforms state-of-the-art methods on both the Davis and KIBA datasets. Additionally, the model's performance undergoes evaluation using three distinct pooling layers (max-pooling, mean-pooling, sum-pooling) along with variations of the attention mechanism. GTAMP-DTA shows significant performance improvements compared to other methods.

Hongjie Wu; Junkai Liu; Tengsheng Jiang; Quan Zou; Shujie Qi; Zhiming Cui
Neural Networks, 2024 169 - EI SCIE

摘要 : The accurate prediction of drug-target affinity (DTA) is a crucial step in drug discovery and design. Traditional experiments are very expensive and time-consuming. Recently, deep learning methods have achieved notable performance improvements in DTA prediction. However, one challenge for deep learning-based models is appropriate and accurate representations of drugs and targets, especially the lack of effective exploration of target representations. Another challenge is how to comprehensively capture the interaction information between different instances, which is also important for predicting DTA. In this study, we propose AttentionMGT-DTA, a multi-modal attention-based model for DTA prediction. AttentionMGT-DTA represents drugs and targets by a molecular graph and binding pocket graph, respectively. Two attention mechanisms are adopted to integrate and interact information between different protein modalities and drug-target pairs. The experimental results showed that our proposed model outperformed state-of-the-art baselines on two benchmark datasets. In addition, AttentionMGT-DTA also had high interpretability by modeling the interaction strength between drug atoms and protein residues. Our code is available at https://github.com/JK-Liu7/AttentionMGT-DTA .

Liu, Junkai; Guan, Shixuan; Zou, Quan; Wu, Hongjie; Tiwari, Prayag; Ding, Yijie
Knowledge-Based Systems, 2024 284 - EI SCIE

摘要 : Identification of new indications for existing drugs is crucial through the various stages of drug discovery. Computational methods are valuable in establishing meaningful associations between drugs and diseases. However, most methods predict the drug–disease associations based solely on similarity data, neglecting valuable biological and chemical information. These methods often use basic concatenation to integrate information from different modalities, limiting their ability to capture features from a comprehensive and in-depth perspective. Therefore, a novel multimodal framework called AMDGT was proposed to predict new drug associations based on dual-graph transformer modules. By combining similarity data and complex biochemical information, AMDGT understands the multimodal feature fusion of drugs and diseases effectively and comprehensively with an attention-aware modality interaction architecture. Extensive experimental results indicate that AMDGT surpasses state-of-the-art methods in real-world datasets. Moreover, case and molecular docking studies demonstrated that AMDGT is an effective tool for drug repositioning. Our code is available at GitHub: https://github.com/JK-Liu7/AMDGT. © 2023 The Author(s)

Haipeng Zhao; Baozhong Zhu; Tengsheng Jiang; Zhiming Cui; Hongjie Wu
Mathematical biosciences and engineering, 2024 21 (1) - EI SCIE

摘要 : DNA-protein binding is crucial for the normal development and function of organisms. The significance of accurately identifying DNA-protein binding sites lies in its role in disease prevention and the development of innovative approaches to disease treatment. In the present study, we introduce a precise and robust identifier for DNA-protein binding residues. In the context of protein representation, we combine the evolutionary information of the protein, represented by its position-specific scoring matrix, with the spatial information of the protein's secondary structure, enriching the overall informational content. This approach initially employs a combination of Bi-directional Long Short-Term Memory and Transformer encoder to jointly extract the interdependencies among residues within the protein sequence. Subsequently, convolutional operations are applied to the resulting feature matrix to capture local features of the residues. Experimental results on the benchmark dataset demonstrate that our method exhibits a higher level of competitiveness when compared to contemporary classifiers. Specifically, our method achieved an MCC of 0.349, SP of 96.50%, SN of 44.03% and ACC of 94.59% on the PDNA-41 dataset.